

Reliable Off-Policy Learning for Dosage Combinations

Jonas Schweisthal, Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel

Institute of AI in Management LMU Munich https://www.som.lmu.de/ai/

Motivation: Real-world interest in finding optimal dosage combinations

Dosage combinations in medicine

- Multiple simultaneously assigned treatments with dosages
- Joint effects (drug-drug interactions)
- Applications: combination therapies for cancer, mechanical ventilation at ICU

Goal

Finding optimal individualized dosage combinations

Constraints

- Accurate dose-response estimation taking joint effects into account
- Scalability
- Reliable dosing recommendations

Tackle the challenge with causal inference

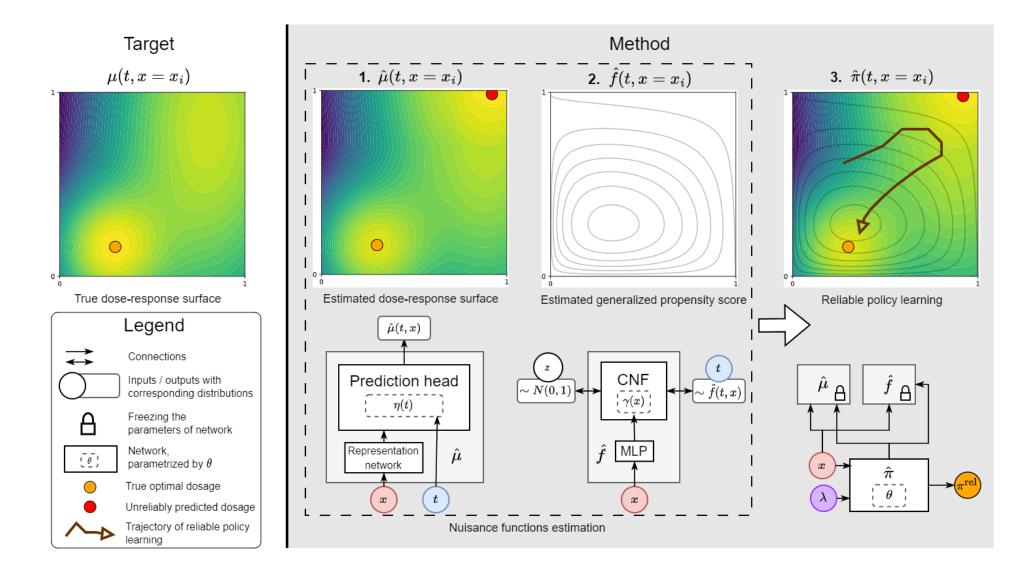
Inherent challenges

1 Observational data

2 Modeling the joint effect of multiple continuous treatments

3 Areas with limited overlap (low data support) in the covariate-treatment space

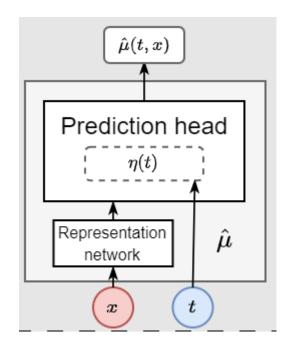
Method: Reliable Off-Policy Learning for Dosage Combinations



1. DCNet for estimating the individualized dose-response function

- Representation network for learning representations of high-dimensional patient features
- Tailored prediction head
 - Expressiveness: Influence of dosages not lost in high-dimensional feature space
 - Smoothness: Model non-linear dose-response surface across treatments smoothly

 $\eta_j(t) = \sum_{k_1=1}^{K_1} \sum_{k_2=1}^{K_2} \cdots \sum_{k_p=1}^{K_p} \beta_{j,k_1k_2\dots k_p} \cdot \psi_{k_1}^{(1)}(t_1) \cdot \psi_{k_2}^{(2)}(t_2) \cdot \dots \cdot \psi_{k_p}^{(p)}(t_p),$

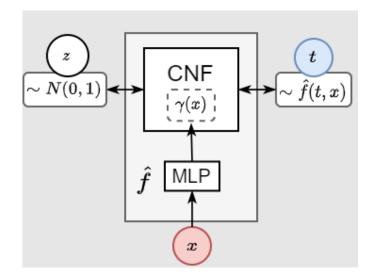


2. Conditional normalizing flows for estimating the GPS

- Neural spline flows for flexible estimation of multimodal densities
- Masked autoregressive networks for multidimensional conditional density estimation

Advantages:

- Universal density approximators
- Properly normalized
- After training constant inference time



3. Reliable Policy Learning

• Objective

$$\begin{split} \min_{\theta} &-\frac{1}{n} \sum_{i=1}^{n} \hat{\mu} \left(\pi_{\theta}(x_{i}), x_{i} \right) \quad \text{s.t.} \ \hat{f} \left(\pi_{\theta}(x_{i}), x_{i} \right) \geq \overline{\varepsilon}, \forall i \\ \iff & \min_{\theta} \max_{\lambda_{i} \geq 0} - \frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{\mu} \left(\pi_{\theta}(x_{i}), x_{i} \right) - \lambda_{i} \left[\hat{f} \left(\pi_{\theta}(x_{i}), x_{i} \right) - \overline{\varepsilon} \right] \end{split}$$

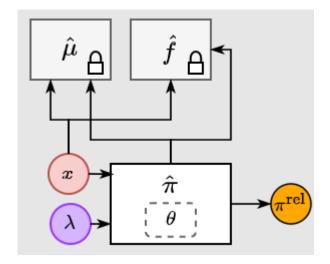
 Can be solved by gradient descent-ascent wrt. to train loss

$$\mathcal{L}_{\pi}(\theta,\lambda) = -\frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{\mu}\left(\hat{\pi}_{\theta}(x_{i}), x_{i}\right) - \lambda_{i} \left[\hat{f}\left(\hat{\pi}_{\theta}(x_{i}), x_{i}\right) - \overline{\varepsilon} \right] \right\}$$

 No guarantee for global convergence in the nonconvex optimization problem → select best out of k runs wrt. validation loss

$$\pi_{\theta}^{\text{rel}} = \pi_{\theta}^{(j)}, \quad \text{with} \quad j = \arg\max_{k} \sum_{i=1}^{n} \hat{\mu} \left(\pi_{\theta}^{(k)}(x_{i}), x_{i} \right) \cdot \mathbb{1} \left\{ \hat{f} \left(\pi_{\theta}^{(k)}(x_{i}), x_{i} \right) \ge \overline{\varepsilon} \right\}$$

Algorithm 1: Reliable off-policy learning for dosage combinations **Input** : data (X, T, Y), reliability threshold $\overline{\varepsilon}$ **Output:** optimal reliable policy $\hat{\pi}_{\theta}^{\text{rel}}$ // Step 1: Estimate individualized dose-response function using our DCNet Estimate $\hat{\mu}(t, x)$ via loss \mathcal{L}_{μ} // Step 2: Estimate GPS using conditional normalizing flows Estimate $\hat{f}(t, x)$ via loss \mathcal{L}_f // Step 3: Train policy network using our reliable learning algorithm for $k \in \{1, 2, ..., K\}$ do // K runs with random initialization $\hat{\pi}_{\theta}^{(k)} \leftarrow \text{initalize randomly}$ $\lambda \leftarrow$ initalize randomly for each epoch do for each batch do $\mathcal{L}_{\pi} \leftarrow -\frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{\mu} \left(\hat{\pi}_{\theta}^{(k)}(x_i), x_i \right) - \lambda_i \left[\hat{f} \left(\hat{\pi}_{\theta}^{(k)}(x_i), x_i \right) - \overline{\varepsilon} \right] \right\}$ $\theta \leftarrow \theta - \eta_{\theta} \nabla_{\theta} \mathcal{L}_{\pi}$ $\lambda \leftarrow \lambda + \eta_{\lambda} \nabla_{\lambda} \mathcal{L}_{\pi}$ end end end // select best learned policy wrt constrained objective on validation set $\hat{\pi}_{\theta}^{\text{rel}} \leftarrow \pi_{\theta}^{(j)}, \quad \text{with} \quad j = \arg\max\left\{\sum_{i=1}^{n} \hat{\mu}\left(\pi_{\theta}^{(k)}(x_i), x_i\right) \in \mathbb{I}\left\{\hat{f}\left(\pi_{\theta}^{(k)}(x_i), x_i\right) \ge \overline{\epsilon}\right\}\right\}$



Experiments

Semi-synthetic datasets from medicine

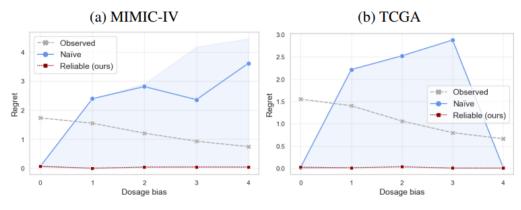
- MIMIC-IV
 - Patients in ICU stay under mechanical ventilation
 - T = ventilation parameters
- TCGA
 - Gene expression data from cancer patients
 - T = drug combinations at chemotherapy

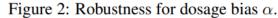
Methods		MIMIC-IV			TCGA		
$\hat{\mu}$	$\hat{\pi}$	Selected	Mean	Std	Selected	Mean	Std
Oracle (μ)	observed	1.21	-	-	1.06	-	-
MLP	naïve	0.02 0.03	1.44	1.56	1.94	1.88	0.12
MLP	reliable		0.03	0.00	1.78	1.78	0.03
VCNet	naïve	2.13	2.49	0.92	3.64	2.47	1.19
VCNet	reliable	0.07	0.07	0.00	0.06	0.06	0.00
DCNet	naïve	2.81	2.07	1.17	2.52	0.94	1.21
DCNet	reliable (ours)	0.04	0.04	0.00	0.03	0.03	0.00

Reported: best / mean / standard deviation (lower = better)

Table 1: Performance against baselines. Regret on test set over k = 5 restarts.

Shown: selected policy (line) and the range over 5 runs (area). The naïve baseline has a large variability across runs while ours is highly robust as expected (i.e., we see no variability).





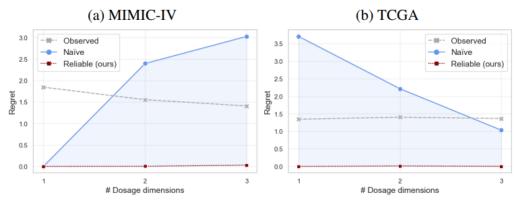


Figure 3: Robustness for number of dosages p.

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU MUNICH INSTITUTE OF SCHOOL OF ARTIFICIAL INTELLIGENCE MANAGEMENT (AI) IN MANAGEMENT

Link to paper

Jonas Schweisthal Institute of AI in Management jonas.schweisthal@Imu.de

